Specifications | STM32 Technical Reference Manual \Chinese\ ping liang |
Business section |

Specifications | STM32 Technical Reference Manual \Chinese\ ping liang |
Business section |
Specifications | STM32 Technical Reference Manual \Chinese\ ping liang |
Outline | 导言 相关文档 目录 1 文中的缩写 1.1 寄存器描述表中使用的缩写列表 1.2 术语表 1.3 可用的外设 2 存储器和总线构架 2.1 系统构架 ICode总线 DCode总线 系统总线 DMA总线 总线矩阵 AHB/APB桥(APB) 6 复位和时钟控制(RCC) 6.1 复位 6.1.1 系统复位 软件复位 低功耗管理复位 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 100脚和144脚封装: 64脚或更少封装: 3 CRC计算单元(CRC) 3.1 CRC简介 3.2 CRC主要特性 3.3 CRC功能描述 3.4 CRC寄存器 3.4.1 数据寄存器(CRC_DR) 3.4.2 独立数据寄存器(CRC_IDR) 3.4.3 控制寄存器(CRC_CR) 3.4.4 CRC寄存器映像 4 电源控制(PWR) 4.1 电源 4.1.1 独立的A/D转换器供电和参考电压 4.1.2 电池备份区域 4.1.3 电压调节器 3 CRC计算单元(CRC) 4 电源控制(PWR) 5 备份寄存器(BKP) 6 复位和时钟控制(RCC) 7 通用和复用功能I/O(GPIO和AFIO) 8 中断和事件 9 DMA 控制器(DMA) 10 模拟/数字转换(ADC) 11 数字/模拟转换(DAC) 12 高级控制定时器(TIM1和TIM8) 13 通用定时器(TIMx) 14 基本定时器(TIM6和TIM7) 15 实时时钟(RTC) 16 独立看门狗(IWDG) 17 窗口看门狗(WWDG) 18 灵活的静态存储器控制器(FSMC) 19 SDIO接口(SDIO) 20 USB全速设备接口(USB) 21 控制器局域网(bxCAN) 22 串行外设接口(SPI) 23 I2C接口 24 通用同步异步收发器(USART) 25 器件电子签名 26 调试支持(DBG) |
Suggested Link Details/Purchase | |
Content | 高级控制定时器(TIM1和TIM8) STM32F10xxx参考手册 179/524 参照2008年12月 RM0008 Reference Manual 英文第7版 本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本 每一个通道的死区延时都是相同的,是由TIMx_BDTR寄存器中的DTG位编程配置。详见 12.4.18节中的延时计算。 重定向OCxREF到OCx或OCxN 在输出模式下(强置、输出比较或PWM),通过配置TIMx_CCER寄存器的CCxE和CCxNE位, OCxREF可以被重定向到OCx或者OCxN的输出。 这个功能可以在互补输出处于无效电平时,在某个输出上送出一个特殊的波形(例如PWM或者静 态有效电平)。另一个作用是,让两个输出同时处于无效电平,或处于有效电平和带死区的互补 输出。 注: 当只使能OCxN(CCxE=0, CCxNE=1)时,它不会反相,当OCxREF有效时立即变高。例如,如 果CCxNP=0,则OCxN=OCxREF。另一方面,当OCx和OCxN都被使能时(CCxE=CCxNE=1), 当OCxREF为高时OCx有效;而OCxN相反,当OCxREF低时OCxN变为有效。 12.3.12 使用刹车功能 当使用刹车功能时,依据相应的控制位(TIMx_BDTR寄存器中的MOE、OSSI和OSSR位, TIMx_CR2寄存器中的OISx和OISxN位),输出使能信号和无效电平都会被修改。但无论何时, OCx和OCxN输出不能在同一时间同时处于有效电平上。详见表56带刹车功能的互补输出通道 OCx和OCxN的控制位。 刹车源既可以是刹车输入管脚又可以是一个时钟失败事件。时钟失败事件由复位时钟控制器中 的时钟安全系统产生,详见第4章。 系统复位后,刹车电路被禁止,MOE位为低。设置TIMx_BDTR寄存器中的BKE位可以使能刹车 功能。刹车输入信号的极性可以通过配置同一个寄存器中的BKP位选择。BKE和BKP可以被同 时修改。 因为MOE下降沿可以是异步的,在实际信号(作用在输出端)和同步控制位(在TIMx_BDTR寄存器 中)之间设置了一个再同步电路。这个再同步电路会在异步信号和同步信号之间产生延迟。特别 的,如果当它为低时写MOE=1,则读出它之前必须先插入一个延时(空指令)才能读到正确的 值。这是因为写入的是异步信号而读的是同步信号。 当发生刹车时(在刹车输入端出现选定的电平),有下述动作: ● MOE位被异步地清除,将输出置于无效状态、空闲状态或者复位状态(由OSSI位选择)。这 个特性在MCU的振荡器关闭时依然有效。 ● 一旦MOE=0,每一个输出通道输出由TIMx_CR2寄存器中的OISx位设定的电平。如果 OSSI=0,则定时器释放使能输出,否则使能输出始终为高。 ● 当使用互补输出时: ─ 输出首先被置于复位状态即无效的状态(取决于极性)。这是异步操作,即使定时器没有时 钟时,此功能也有效。 ─ 如果定时器的时钟依然存在,死区生成器将会重新生效,在死区之后根据OISx和OISxN 位指示的电平驱动输出端口。即使在这种情况下,OCx和OCxN也不能被同时驱动到有 效的电平。注,因为重新同步MOE,死区时间比通常情况下长一些(大约2个ck_tim的 时钟周期)。 ─ 如果OSSI=0,定时器释放使能输出,否则保持使能输出;或一旦CCxE与CCxNE之一 变高时,使能输出变为高。 ● 如果设置了TIMx_DIER寄存器中的BIE位,当刹车状态标志(TIMx_SR寄存器中的BIF位) 为’1’时,则产生一个中断。如果设置了TIMx_DIER寄存器中的BDE位,则产生一个DMA请 求。 ● 如果设置了TIMx_BDTR寄存器中的AOE位,在下一个更新事件UEV时MOE位被自动置位; 例如,这可以用来进行整形。否则,MOE始终保持低直到被再次置’1’;此时,这个特性可 以被用在安全方面,你可以把刹车输入连到电源驱动的报警输出、热敏传感器或者其他安 全器件上。 |
Navigation | Previous Page / Next Page |
Suggested Link Details/Purchase | |
Following Datasheets | STM32_Flyer_ch (8 pages) STM32_MCU-1 (4 pages) STM32_tools_200710_CN (9 pages) STM_statement_onconflict_minerals_final_signed (1 pages) StudentDay1 (5 pages) stz5_6n_2 (3 pages) stz6_2n_2 (3 pages) stz6_8n_2 (3 pages) stz6_8t_2 (3 pages) stzc6_8n_2 (3 pages) |
Check in e-portals![]() |
World-H-News Products Extensions Partners Automation Jet Parts |
Sitemap Folder | group1 group2 group3 group4 group5 group6 group7 group8 group9 group10 group11 group12 group13 group14 group15 group16 group17 group18 group19 group20 group21 group22 group23 group24 group25 group26 group27 group28 group29 group30 group31 group32 group33 group34 group35 group36 group37 group38 group39 group40 group41 group42 group43 group44 group45 group46 group47 group48 group49 group50 group51 group52 group53 group54 group55 group56 group57 group58 group59 group60 group61 group62 group63 group64 group65 group66 group67 group68 group69 group70 group71 group72 group73 group74 group75 group76 group77 group78 group79 group80 group81 group82 group83 group84 group85 group86 group87 group88 group89 group90 group91 group92 group93 group94 group95 group96 group97 group98 group99 group100 Prewious Folder Next Folder |